OpenFCST: The open-source Fuel Cell Simulation Toolbox
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Public Member Functions | Private Member Functions | Private Attributes | List of all members
SIM::DakotaApplication Class Reference

This class is used to interface with DAKOTA as an algorithm library. More...

#include <dakota_application.h>

Public Member Functions

 DakotaApplication (boost::shared_ptr< Dakota::ProblemDescDB > global_problem_db, std::string parameter_file)
 Constructor for an object of this class. More...
 
void manage_inputs (ParameterHandler &param)
 Declares & Initializes all parameters, creates Dakota input file. More...
 
void assign_interface (Dakota::DirectApplicInterface *optimization_interface)
 Assign the direct interface to the simulation code which is of type Dakota::DirectApplicInterface. More...
 
void run ()
 This function will first lock the problem_db preventing anychanges to the data. More...
 
bool use_NLS ()
 Get boolean NLS flag. More...
 
Dakota::RealVector vars_results ()
 Function retrieves and returns the final optimum design variables. More...
 
Dakota::RealVector resp_results ()
 Function retrieves and returns the optimum response values. More...
 
void declare_parameters (ParameterHandler &param)
 Declare all parameters that are needed for optimization. More...
 
void synchronize_variables (unsigned int &n_dvar, unsigned int &n_resp, std::vector< std::string > &name_design_var, std::vector< std::string > &name_responses)
 This function is used to remotely axcess the number and name of design_variables, number and name of responses, as they are private variables. More...
 

Private Member Functions

void initialize (ParameterHandler &param)
 Read in parameters for the parameter handler in order to initialize data.These parameters are read in from the Opt_data file. More...
 
void write_hybrid_dakota_input_file ()
 Write Dakota input file for hybrid optimization strategy. More...
 
void write_pareto_dakota_input_file ()
 Write Dakota input file for pareto optimization strategy. More...
 
void write_multi_start_dakota_input_file ()
 Write Dakota input file for multi-start optimization strategy. More...
 
void write_single_method_dakota_input_file ()
 Write Dakota input file for single optimization strategy. More...
 
void write_method (std::stringstream &inputss, std::string &method_id, std::string method_name, std::string model_ptr)
 Member function to write Dakota input file based on method selection. More...
 
void write_responses (std::stringstream &inputss, int id, std::string method_name)
 Member function to write Dakota input file based on specified response variables. More...
 
void write_variables (std::stringstream &inputss, int id)
 Member function to write Dakota input file based on specified variables. More...
 
 DeclException2 (DesignVariableNotFoundInFCSTDesignVariables, std::string, std::string,<< "A "<< arg1<< " with name \""<< arg2<< "\" is not stored in available FCST design variables. Please define the variable in DakotaApplication class and in set_parameters in the appropriate class")
 Exception thrown when a user defined design variables is not found among available FCST design variables. More...
 

Private Attributes

bool a_gradients
 Analytical Gradients option for Dakota optimization. More...
 
bool n_gradients
 Numerical Gradients option for Dakota optimization. More...
 
std::string n_gradient_type
 Numerical Gradients type for Dakota optimization. More...
 
bool hessians
 Analytical Hessian Option for Dakota optimization. More...
 
unsigned int n_dvar
 Number of design variables. More...
 
unsigned int n_obj
 Number of objective functions. More...
 
unsigned int n_nl_con
 Number of non-linear constraints. More...
 
unsigned int n_eq_con
 Number of equality constraints. More...
 
unsigned int n_con
 Total number of constraints = n_nl_con + n_eq_con. More...
 
unsigned int n_resp
 Number of responses = n_obj + n_con. More...
 
std::vector< std::string > name_design_var
 Member that stores the name of the design variables. More...
 
std::vector< std::string > all_name_design_var
 Member that stores the name of all possible design variables that have been defined in FCST. More...
 
std::vector< std::string > name_responses
 Member that stores the name of the responses, i.e. More...
 
std::string input_file
 Name of the analysis input file. More...
 
boost::shared_ptr
< Dakota::ProblemDescDB > 
problem_db
 Pointer to the problem description data base. More...
 
std::string dakota_version
 Dakota version used. More...
 
bool use_dakota_input_file
 Flag to use an input file from Dakota Specify interface, method, and strategy options, number of variables, number of responses/constrants. More...
 
std::string dakota_input
 Name of the Dakota input file. More...
 
std::string optimization_strategy
 Optimization Strategy - Single, Pareto, Multi start point, Hybrid. More...
 
std::string optimization_method
 Optimization Method - OPT++, NL2SOL, multidim_parameter_study, etc. More...
 
bool NLS_flag
 Nonlinear Least-Squares Parameter Estimation Flag. More...
 
bool scaling
 Used to activate scaling. More...
 
std::string NLS_data_file
 Experimental data file for NLS parameter estimation - Operating Conditions & output. More...
 
int max_iter
 Maximum number of optimization iterations. More...
 
int max_f_eval
 Maximum number of optimization function evaluations. More...
 
double convergence_tol
 Optimization convergence tolerance. More...
 
double constraint_tol
 Optimization constraint tolerance. More...
 
int rand_pareto_weights
 Number of random weights for generating objective function pareto set. More...
 
int rand_start_points
 Number of random weights for generating objective function pareto set. More...
 
std::string hybrid_strategy
 Hybrid Optimization strategy - sequential, etc. More...
 
int n_hybrid_methods
 Number of Hybrid Optimization methods. More...
 
std::vector< std::string > hybrid_opt_method
 Hybrid Optimization method names. More...
 
std::vector< std::string > method_list
 Hybrid Optimization method string identifiers. More...
 
std::vector< std::string > model_ptr
 Hybrid Optimization model string identifiers. More...
 
std::vector< double > tol
 Hybrid Optimization method specific tolerances. More...
 
std::vector< double > eval_max
 Hybrid Optimization method specific function evaluation maximums. More...
 
std::vector< double > iter_max
 Hybrid Optimization method specific iteration maximums. More...
 
std::vector< int > part_design_var
 Parameter Study Partition vector Set number of partitions for multidim_parameter_study NOTE: Evaluated at n+1 points between lower and upper bound. More...
 
double step_to_boundary
 OPT++ steplength. More...
 
double grad_tol
 OPT++ gradient tolerance. More...
 
std::string merit_function
 OPT++ merit function. More...
 
double trust_rad
 NL2SOL initial trust radius. More...
 
double abs_conv_tol
 NL2SOL absolute convergence tolerance. More...
 
double x_conv_tol
 NL2SOL Parameter convergence tolerance. More...
 
double false_conv_tol
 NL2SOL Parameter false convergence tolerance. More...
 
int m_data_points
 NL2SOL Parameter storing the number of terms. More...
 
double solution_target
 NCSU parameter. More...
 
double final_solutions
 NCSU parameter. More...
 
double min_boxsize_limit
 NCSU parameter. More...
 
double volume_boxsize_limit
 NCSU parameter. More...
 
Dakota::StringArray dakota_name_design_var
 Dakota array of design variable names. More...
 
Dakota::RealVector ip_design_var
 Dakota vector of design variable initial points. More...
 
Dakota::RealVector lb_design_var
 Dakota vector of design variable lower bounds. More...
 
Dakota::RealVector ub_design_var
 Dakota vector of design variable upper bounds. More...
 
Dakota::RealVector scale_design_var
 Dakota vector of design variable scales. More...
 
Dakota::StringArray scale_types
 Dakota vector of design variable scale methods. More...
 
Dakota::RealVector step_design_var
 Dakota vector of design variable step sizes for numerical gradients. More...
 
Dakota::RealVector lb_nl_constraint
 Dakota vector of nonlinear constraint lower bounds. More...
 
Dakota::RealVector ub_nl_constraint
 Dakota vector of nonlinear constraint upper bounds. More...
 
Dakota::RealVector eq_constraint
 Dakota vector of equality constraints. More...
 
Dakota::Strategy selected_strategy
 DAKOTA strategy. More...
 
double centering_param
 Centering parameter for the opt++ strategy. More...
 
double initial_delta
 Optimization SCOLIB (COLINY) - COBYLA (Constrained Optimization By Linear Appoximations) [coliny_cobyla], APPS [asynch_pattern_search], and coliny_pattern_search . More...
 
double threshold_delta
 
double contraction_factor
 
std::string mutation_type
 Optimization - OPT++ Search method . More...
 
std::string crossover_type
 JEGA - crossover_type. More...
 
std::string fitness_type
 JEGA - fitness_type. More...
 
std::string fitness_type_moga
 
std::string replacement_type
 JEGA - replacement_type. More...
 
std::string replacement_type_moga
 
std::string initialization_type
 JEGA - initialization_type. More...
 
std::string convergence_type
 JEGA - convergence_type. More...
 
std::string convergence_type_moga
 
double num_offspring
 JEGA - Number of Offspring and Parent. More...
 
double num_parents
 

Detailed Description

This class is used to interface with DAKOTA as an algorithm library.

It reads the optimization specifications from the parameter file specified in the main parameter file used to launch FCST under subsection Simulator >> set optimization parameter file name.

DakotaApplication is called by simulator_builder and it uses a direct application interface to the analysis code and runs the optimization.

This member function defines all available design variables that can be used for optimization. Variables specified in the optimization file in:

* subsection Optimization Parameters
* subsection Design Variables
* set num_design_variables = 1
* set DV_0_name = subsection>>subsection>>subsection>>parameter
* end
* end
*

need to have been defined in this file. Note that the character ">>" is used to separate subsections. Several parameters in the input file contain a list of comma separated parameters of the form material_id:value or boundary_id:value. If one of this parameters needs to be used for optimization, it can be done using the following format to define the variable:

* set DV_0_name = subsection>>subsection>>subsection>>parameter:material_id
*

The program will automatically replace the value in the list with the appropriate material_id

Author
Peter Dobson, 2010
Malte Krack, 2010
Marc Secanell, 2012-14

Constructor & Destructor Documentation

SIM::DakotaApplication::DakotaApplication ( boost::shared_ptr< Dakota::ProblemDescDB >  global_problem_db,
std::string  parameter_file 
)

Constructor for an object of this class.

Optimization details are read from the input_file, the optimization_interface is used for the function evaluations.

Member Function Documentation

void SIM::DakotaApplication::assign_interface ( Dakota::DirectApplicInterface *  optimization_interface)

Assign the direct interface to the simulation code which is of type Dakota::DirectApplicInterface.

http://dakota.sandia.gov/docs/dakota/5.2/html-dev/DakLibrary.html For an example, see SIM::DakotaDirectInterface or SIM::DakotaLeastSquaresInterface

void SIM::DakotaApplication::declare_parameters ( ParameterHandler &  param)

Declare all parameters that are needed for optimization.

These parameters are read in from the Opt_data file.

SIM::DakotaApplication::DeclException2 ( DesignVariableNotFoundInFCSTDesignVariables  ,
std::string  ,
std::string  ,
<< "A "<< arg1<< " with name \""<< arg2<< "\" is not stored in available FCST design variables. Please define the variable in DakotaApplication class and in set_parameters in the appropriate class"   
)
private

Exception thrown when a user defined design variables is not found among available FCST design variables.

void SIM::DakotaApplication::initialize ( ParameterHandler &  param)
private

Read in parameters for the parameter handler in order to initialize data.These parameters are read in from the Opt_data file.

void SIM::DakotaApplication::manage_inputs ( ParameterHandler &  param)

Declares & Initializes all parameters, creates Dakota input file.

Interfaces with Dakota to parse the input file, and populate the Dakota Problem Database with variables and constraints.

Dakota::RealVector SIM::DakotaApplication::resp_results ( )

Function retrieves and returns the optimum response values.

void SIM::DakotaApplication::run ( )

This function will first lock the problem_db preventing anychanges to the data.

It will then select the strategy for optimizating (E.g. SingleMethideStrategy,HybridStategy...) and Run the optimization using the DakotaDirectInterface using the data which you have assigned by using assign_interface()

void SIM::DakotaApplication::synchronize_variables ( unsigned int &  n_dvar,
unsigned int &  n_resp,
std::vector< std::string > &  name_design_var,
std::vector< std::string > &  name_responses 
)

This function is used to remotely axcess the number and name of design_variables, number and name of responses, as they are private variables.

bool SIM::DakotaApplication::use_NLS ( )
inline

Get boolean NLS flag.

If this is set true in the text file the optimizating will use the DakotaLeastSquaresInterface routine found in dakota_direct_interface. NLS_flag is set using the opt_app_ .prm file.

* subsection Optimization Program Options
* set Use NLS = true
*

Additional inputs to consider in .prm file when using NLS.

* set NLS data file = data.txt
* set NLS residual option = weighted
* set Numerical gradients = true
* set Numerical gradient type = central
* set Number of random start points = 4
* set Convergence tolerance = 1e-4
* set Constraint tolerance = 1e-4
* set NLS residual value = norm
*

References NLS_flag.

Dakota::RealVector SIM::DakotaApplication::vars_results ( )

Function retrieves and returns the final optimum design variables.

void SIM::DakotaApplication::write_hybrid_dakota_input_file ( )
private

Write Dakota input file for hybrid optimization strategy.

void SIM::DakotaApplication::write_method ( std::stringstream &  inputss,
std::string &  method_id,
std::string  method_name,
std::string  model_ptr 
)
private

Member function to write Dakota input file based on method selection.

void SIM::DakotaApplication::write_multi_start_dakota_input_file ( )
private

Write Dakota input file for multi-start optimization strategy.

void SIM::DakotaApplication::write_pareto_dakota_input_file ( )
private

Write Dakota input file for pareto optimization strategy.

void SIM::DakotaApplication::write_responses ( std::stringstream &  inputss,
int  id,
std::string  method_name 
)
private

Member function to write Dakota input file based on specified response variables.

void SIM::DakotaApplication::write_single_method_dakota_input_file ( )
private

Write Dakota input file for single optimization strategy.

void SIM::DakotaApplication::write_variables ( std::stringstream &  inputss,
int  id 
)
private

Member function to write Dakota input file based on specified variables.

Member Data Documentation

bool SIM::DakotaApplication::a_gradients
private

Analytical Gradients option for Dakota optimization.

double SIM::DakotaApplication::abs_conv_tol
private

NL2SOL absolute convergence tolerance.

std::vector<std::string> SIM::DakotaApplication::all_name_design_var
private

Member that stores the name of all possible design variables that have been defined in FCST.

double SIM::DakotaApplication::centering_param
private

Centering parameter for the opt++ strategy.

double SIM::DakotaApplication::constraint_tol
private

Optimization constraint tolerance.

double SIM::DakotaApplication::contraction_factor
private
double SIM::DakotaApplication::convergence_tol
private

Optimization convergence tolerance.

std::string SIM::DakotaApplication::convergence_type
private

JEGA - convergence_type.

std::string SIM::DakotaApplication::convergence_type_moga
private
std::string SIM::DakotaApplication::crossover_type
private

JEGA - crossover_type.

std::string SIM::DakotaApplication::dakota_input
private

Name of the Dakota input file.

Dakota::StringArray SIM::DakotaApplication::dakota_name_design_var
private

Dakota array of design variable names.

std::string SIM::DakotaApplication::dakota_version
private

Dakota version used.

Dakota::RealVector SIM::DakotaApplication::eq_constraint
private

Dakota vector of equality constraints.

std::vector<double> SIM::DakotaApplication::eval_max
private

Hybrid Optimization method specific function evaluation maximums.

double SIM::DakotaApplication::false_conv_tol
private

NL2SOL Parameter false convergence tolerance.

double SIM::DakotaApplication::final_solutions
private

NCSU parameter.

std::string SIM::DakotaApplication::fitness_type
private

JEGA - fitness_type.

std::string SIM::DakotaApplication::fitness_type_moga
private
double SIM::DakotaApplication::grad_tol
private

OPT++ gradient tolerance.

bool SIM::DakotaApplication::hessians
private

Analytical Hessian Option for Dakota optimization.

std::vector<std::string> SIM::DakotaApplication::hybrid_opt_method
private

Hybrid Optimization method names.

std::string SIM::DakotaApplication::hybrid_strategy
private

Hybrid Optimization strategy - sequential, etc.

double SIM::DakotaApplication::initial_delta
private

Optimization SCOLIB (COLINY) - COBYLA (Constrained Optimization By Linear Appoximations) [coliny_cobyla], APPS [asynch_pattern_search], and coliny_pattern_search .

These are the variables required when running the COBYLA optimization methods. Below illustrates how these methods can be implemented into the "opt_app_***_***.prm" files.

* ######### Method Specific Parameters #########
* ######### SCOLIB (COLINY) #########
* #########----------------------------#########
*
* subsection coliny_cobyla
* set Initial Delta = 1 # (default) 1
* set Threshold Delta = 0.0001 # (default) 0.0001
* end
*
*

If using "coliny_pattern_search", "coliny_solis_wets", OR "asynch_pattern_search" these are the variables available.

* subsection coliny_pattern_search # asynch_pattern_search | coliny_solis_wets
* set Initial Delta = 1 # (default) 1
* set Threshold Delta = 0.0001 # (default) 0.0001
* set Contraction Factor = 0.5 # (default) 0.5
* end
*
std::string SIM::DakotaApplication::initialization_type
private

JEGA - initialization_type.

std::string SIM::DakotaApplication::input_file
private

Name of the analysis input file.

Dakota::RealVector SIM::DakotaApplication::ip_design_var
private

Dakota vector of design variable initial points.

std::vector<double> SIM::DakotaApplication::iter_max
private

Hybrid Optimization method specific iteration maximums.

Dakota::RealVector SIM::DakotaApplication::lb_design_var
private

Dakota vector of design variable lower bounds.

Dakota::RealVector SIM::DakotaApplication::lb_nl_constraint
private

Dakota vector of nonlinear constraint lower bounds.

int SIM::DakotaApplication::m_data_points
private

NL2SOL Parameter storing the number of terms.

int SIM::DakotaApplication::max_f_eval
private

Maximum number of optimization function evaluations.

int SIM::DakotaApplication::max_iter
private

Maximum number of optimization iterations.

std::string SIM::DakotaApplication::merit_function
private

OPT++ merit function.

std::vector<std::string> SIM::DakotaApplication::method_list
private

Hybrid Optimization method string identifiers.

double SIM::DakotaApplication::min_boxsize_limit
private

NCSU parameter.

std::vector<std::string> SIM::DakotaApplication::model_ptr
private

Hybrid Optimization model string identifiers.

std::string SIM::DakotaApplication::mutation_type
private

Optimization - OPT++ Search method .

Optimization JEGA (John Eddy Genetic Algorithm) - "moga" & "soga" The JEGA library contains two global optimization methods: MOGA - Multi-objective Genetic Algorithm SOGA - Single-objective Genetic Algorithm

An example of implementing these algorithms into the "opt_app_***_***.prm" file can be seen below. When using either there are some variables that are common to both "moga" & "soga"

*
* subsection soga # moga
* set Cross Over Type = shuffle_random # (default) shuffle_random
* set Initialization Type = unique_random # (default) unique_random
* set Mutation Type = replace_uniform # (default) replace_uniform
* set Number of Offspring = 2 # (default) 2
* set Number of Parents = 2 # (default) 2
*

Those which are uncommon to "moga" & "soga" are:

*
* set Replacement Type = elitist # (default) elitist
* set Convergence Type = average_fitness_tracker # (default) average_fitness_tracker
* set Fitness Type = merit_function
* end
*
*

/ *** JEGA - mutation_type

unsigned int SIM::DakotaApplication::n_con
private

Total number of constraints = n_nl_con + n_eq_con.

unsigned int SIM::DakotaApplication::n_dvar
private

Number of design variables.

This variable is set in the "opt_app_***_***.prm" file. Each design variable requires:

  • Initial Point
  • Lower Bound
  • Upper Bound
  • Scale (Method & Magnitude)
  • Step size An Example of the implemented prm file can be seen below.
    * subsection Design Variables
    * set num_design_variables = 1 # 2
    * set DV_0_name = prc_N_c # L_CCL
    * set DV_1_name = T_cell
    *
    * ####### Initial Point #######
    * #######---------------#######
    * set DV_0_ip = 0.2
    * set DV_1_ip = 280
    *
    * ####### Lower Bound #######
    * ####### lb < -1e30 for -inf #######
    * #-----------------------------------#
    * set DV_0_lb = 0.2
    * set DV_1_lb = 273.15
    *
    * ####### Upper Bound #######
    * ####### ub > 1e30 for inf #######
    * #-------------------------------#
    * set DV_0_ub = 0.5 # 10e-4
    * set DV_1_ub = 373.15
    *
    * ####### Scales #######
    * #######--------#######
    * set DV_0_scale_method = value # none | auto | value
    * set DV_1_scale_method = value # none | auto | value
    *
    * set DV_0_scale = 0.1
    * set DV_1_scale = 1
    *
    * ####### Step size #######
    * #######-----------#######
    * set DV_0_step = 1e-4
    * set DV_1_step = 1e-4
    *
    * end
    *
unsigned int SIM::DakotaApplication::n_eq_con
private

Number of equality constraints.

std::string SIM::DakotaApplication::n_gradient_type
private

Numerical Gradients type for Dakota optimization.

* subsection Optimization Program Options
* set Numerical gradient type = central
*

There are two types of "Numerical gradient types". -forward -central These are declared in DakotaApplication::declare_parameters()

* param.declare_entry("Numerical gradient type",
* "forward",
* Patterns::Selection("forward|central"));
*
bool SIM::DakotaApplication::n_gradients
private

Numerical Gradients option for Dakota optimization.

* subsection Optimization Program Options
* set Numerical gradients = true
*
int SIM::DakotaApplication::n_hybrid_methods
private

Number of Hybrid Optimization methods.

unsigned int SIM::DakotaApplication::n_nl_con
private

Number of non-linear constraints.

unsigned int SIM::DakotaApplication::n_obj
private

Number of objective functions.

unsigned int SIM::DakotaApplication::n_resp
private

Number of responses = n_obj + n_con.

std::vector<std::string> SIM::DakotaApplication::name_design_var
private

Member that stores the name of the design variables.

std::vector<std::string> SIM::DakotaApplication::name_responses
private

Member that stores the name of the responses, i.e.

objectives and constraints.

Note
first we put the name of all objectives and then all constraints
std::string SIM::DakotaApplication::NLS_data_file
private

Experimental data file for NLS parameter estimation - Operating Conditions & output.

bool SIM::DakotaApplication::NLS_flag
private

Nonlinear Least-Squares Parameter Estimation Flag.

Referenced by use_NLS().

double SIM::DakotaApplication::num_offspring
private

JEGA - Number of Offspring and Parent.

double SIM::DakotaApplication::num_parents
private
std::string SIM::DakotaApplication::optimization_method
private

Optimization Method - OPT++, NL2SOL, multidim_parameter_study, etc.

* subsection Optimization Program Options
* set Optimization method = optpp_q_newton # multidim_parameter_study | optpp_q_newton | nl2sol | ncsu_direct
*
std::string SIM::DakotaApplication::optimization_strategy
private

Optimization Strategy - Single, Pareto, Multi start point, Hybrid.

* subsection Optimization Program Options
* set Optimization strategy = single_method # single_method | multi_start | pareto_set | hybrid
*
std::vector<int> SIM::DakotaApplication::part_design_var
private

Parameter Study Partition vector Set number of partitions for multidim_parameter_study NOTE: Evaluated at n+1 points between lower and upper bound.

boost::shared_ptr<Dakota::ProblemDescDB> SIM::DakotaApplication::problem_db
private

Pointer to the problem description data base.

int SIM::DakotaApplication::rand_pareto_weights
private

Number of random weights for generating objective function pareto set.

int SIM::DakotaApplication::rand_start_points
private

Number of random weights for generating objective function pareto set.

std::string SIM::DakotaApplication::replacement_type
private

JEGA - replacement_type.

std::string SIM::DakotaApplication::replacement_type_moga
private
Dakota::RealVector SIM::DakotaApplication::scale_design_var
private

Dakota vector of design variable scales.

Dakota::StringArray SIM::DakotaApplication::scale_types
private

Dakota vector of design variable scale methods.

bool SIM::DakotaApplication::scaling
private

Used to activate scaling.

It will use the values in scale and scale_method in order to scale the design variables (used by NLS and OPT+ methods). Implementation of this can be seen above in number of design variables.

Dakota::Strategy SIM::DakotaApplication::selected_strategy
private

DAKOTA strategy.

From DAKOTA reference guide: "The Strategy class is the base class for the class hierarchy providing the top level control in DAKOTA. The strategy is responsible for creating and managing iterators and models. For memory efficiency and enhanced polymorphism, the strategy hierarchy employs the "letter/envelope idiom" (see Coplien "Advanced C++", p. 133), for which the base class (Strategy) serves as the envelope and one of the derived classes (selected in Strategy::get_strategy()) serves as the letter."

For more information see: http://dakota.sandia.gov/licensing/votd/html-dev/

double SIM::DakotaApplication::solution_target
private

NCSU parameter.

Dakota::RealVector SIM::DakotaApplication::step_design_var
private

Dakota vector of design variable step sizes for numerical gradients.

double SIM::DakotaApplication::step_to_boundary
private

OPT++ steplength.

double SIM::DakotaApplication::threshold_delta
private
std::vector<double> SIM::DakotaApplication::tol
private

Hybrid Optimization method specific tolerances.

double SIM::DakotaApplication::trust_rad
private

NL2SOL initial trust radius.

Dakota::RealVector SIM::DakotaApplication::ub_design_var
private

Dakota vector of design variable upper bounds.

Dakota::RealVector SIM::DakotaApplication::ub_nl_constraint
private

Dakota vector of nonlinear constraint upper bounds.

bool SIM::DakotaApplication::use_dakota_input_file
private

Flag to use an input file from Dakota Specify interface, method, and strategy options, number of variables, number of responses/constrants.

Identifier strings must be specified as method_0, and sequentially (i.e. method_1, method_2, etc.) for hybrid method. Do not specify variable string identifiers, bound values, constraint values, etc. Variable bounds, responses and constraints set in parameter file

double SIM::DakotaApplication::volume_boxsize_limit
private

NCSU parameter.

double SIM::DakotaApplication::x_conv_tol
private

NL2SOL Parameter convergence tolerance.


The documentation for this class was generated from the following file: