OpenFCST: The open-source Fuel Cell Simulation Toolbox
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Functions
Constants Namespace Reference

Functions

double R ()
 Universal gas constant, $ R_{} = 8.314462176 \quad \left[ \frac{\text{J}}{\text{mol K}} \right] $. More...
 
double F ()
 Faraday constant, $ F_{} = 9.648533992 \cdot 10^4 \quad \left[ \frac{\text{C}}{\text{mol}} \right] $. More...
 
double Pi ()
 $ \pi_{} = 3.141592654 $. More...
 
double E0 ()
 Permittivity of free space, $ \epsilon_0^{} = 8.854187818 \cdot 10^{-12} \quad \left[ \frac{\text{F}}{\text{m}} \right] $. More...
 
double K ()
 Boltzmann constant, $ k_{} = 8.617332478 \cdot 10^{-5} \quad \left[ \frac{\text{eV}}{\text{K}} \right] $. More...
 
double K_SI ()
 Boltzmann constant in SI units, $ k_{} = 1.3806488 \cdot 10^{-23} \quad \left[ \frac{\text{J}}{\text{K}} \right] $. More...
 
double N_A ()
 Avogadro's constant, $ N_A = 6.022140857 \cdot 10^{23} \quad \left[ \frac{\text{molecules}}{\text{mol}} \right] $. More...
 
const dealii::Tensor< 1, dimgravity_acceleration ()
 Gravitational acceleration, $ \mathbf{g} = \{ g_{\alpha} \}_{\alpha = 1}^d \quad \text{such that} \quad \forall \alpha \neq d : \quad g_{\alpha} = 0 \quad \left[ \frac{\text{m}}{\text{sec}^2} \right] \quad \text{and} \quad g_d = -9.81 \quad \left[ \frac{\text{m}}{\text{sec}^2} \right] $. More...
 
const dealii::SymmetricTensor
< 2, dim
unit_tensor ()
 Unit tensor, $ \hat{ \mathbf{I} } = \{ \delta_{\alpha \beta} \}_{\alpha,\beta = 1}^d $. More...
 
double A_vk ()
 Coefficient $ A = 1.16145 $ of the Neufeld-Jansen-Aziz collision integrals formula (viscosity and thermal conductivity). More...
 
double B_vk ()
 Coefficient $ B = 0.14874 $ of the Neufeld-Jansen-Aziz collision integrals formula (viscosity and thermal conductivity). More...
 
double C_vk ()
 Coefficient $ C = 0.52487 $ of the Neufeld-Jansen-Aziz collision integrals formula (viscosity and thermal conductivity). More...
 
double D_vk ()
 Coefficient $ D = 0.77320 $ of the Neufeld-Jansen-Aziz collision integrals formula (viscosity and thermal conductivity). More...
 
double E_vk ()
 Coefficient $ E = 2.16178 $ of the Neufeld-Jansen-Aziz collision integrals formula (viscosity and thermal conductivity). More...
 
double F_vk ()
 Coefficient $ F = 2.43787 $ of the Neufeld-Jansen-Aziz collision integrals formula (viscosity and thermal conductivity). More...
 
double A_diff ()
 Coefficient $ A = 1.06036 $ of the Neufeld-Jansen-Aziz collision integrals formula (diffusivity). More...
 
double B_diff ()
 Coefficient $ B = 0.15610 $ of the Neufeld-Jansen-Aziz collision integrals formula (diffusivity). More...
 
double C_diff ()
 Coefficient $ C = 0.19300 $ of the Neufeld-Jansen-Aziz collision integrals formula (diffusivity). More...
 
double D_diff ()
 Coefficient $ D = 0.47635 $ of the Neufeld-Jansen-Aziz collision integrals formula (diffusivity). More...
 
double E_diff ()
 Coefficient $ E = 1.03587 $ of the Neufeld-Jansen-Aziz collision integrals formula (diffusivity). More...
 
double F_diff ()
 Coefficient $ F = 1.52996 $ of the Neufeld-Jansen-Aziz collision integrals formula (diffusivity). More...
 
double G_diff ()
 Coefficient $ G = 1.76474 $ of the Neufeld-Jansen-Aziz collision integrals formula (diffusivity). More...
 
double H_diff ()
 Coefficient $ H = 3.89411 $ of the Neufeld-Jansen-Aziz collision integrals formula (diffusivity). More...
 
double b_0 ()
 Coefficient $ b_0 = -2.1794 $ of the Springer-Zawodzinski-Gottesfeld water vapor saturation pressure formula. More...
 
double b_1 ()
 Coefficient $ b_1 = 2.9530 \cdot 10^{-2} $ of the Springer-Zawodzinski-Gottesfeld water vapor saturation pressure formula. More...
 
double b_2 ()
 Coefficient $ b_2 = -9.1837 \cdot 10^{-5} $ of the Springer-Zawodzinski-Gottesfeld water vapor saturation pressure formula. More...
 
double b_3 ()
 Coefficient $ b_3 = 1.4454 \cdot 10^{-7} $ of the Springer-Zawodzinski-Gottesfeld water vapor saturation pressure formula. More...
 
double A11_visc_R1 ()
 Coefficient $ A_{} = 1.340794 $ for the $ \Omega^{*(1,1)}_{} $ integrals formula (viscosity) between $ 0.3 \leq T^* < 2.5 $. More...
 
double B11_visc_R1 ()
 Coefficient $ B_{} = 0.326244; $ for the $ \Omega^{*(1,1)}_{} $ integrals formula (viscosity) between $ 0.3 \leq T^* < 2.5 $. More...
 
double C11_visc_R1 ()
 Coefficient $ C_{} = 1.546648 $ for the $ \Omega^{*(1,1)}_{} $ integrals formula (viscosity) between $ 0.3 \leq T^* < 2.5 $. More...
 
double D11_visc_R1 ()
 Coefficient $ D_{} = 2.768179 $ for the $ \Omega^{*(1,1)}_{} $ integrals formula (viscosity) between $ 0.3 \leq T^* < 2.5 $. More...
 
double A11_visc_R2 ()
 Coefficient $ A_{} = 1.066993 $ for the $ \Omega^{*(1,1)}_{} $ integrals formula (viscosity) between $ 2.5 \leq T^* < 400 $. More...
 
double B11_visc_R2 ()
 Coefficient $ B_{} = 0.157384; $ for the $ \Omega^{*(1,1)}_{} $ integrals formula (viscosity) between $ 2.5 \leq T^* < 400 $. More...
 
double C11_visc_R2 ()
 Coefficient $ C_{} = 0.424013 $ for the $ \Omega^{*(1,1)}_{} $ integrals formula (viscosity) between $ 2.5 \leq T^* < 400 $. More...
 
double D11_visc_R2 ()
 Coefficient $ D_{} = 0.698873 $ for the $ \Omega^{*(1,1)}_{} $ integrals formula (viscosity) between $ 2.5 \leq T^* < 400 $. More...
 
double A22_visc_R1 ()
 Coefficient $ A_{} = 26.425725 $ for the $ \Omega^{*(2,2)}_{} $ integrals formula (viscosity) between $ 0.3 \leq T^* < 2.5 $. More...
 
double B22_visc_R1 ()
 Coefficient $ B_{} = 0.045563; $ for the $ \Omega^{*(2,2)}_{} $ integrals formula (viscosity) between $ 0.3 \leq T^* < 2.5 $. More...
 
double C22_visc_R1 ()
 Coefficient $ C_{} = -25.232304 $ for the $ \Omega^{*(2,2)}_{} $ integrals formula (viscosity) between $ 0.3 \leq T^* < 2.5 $. More...
 
double D22_visc_R1 ()
 Coefficient $ D_{} = 0.016075 $ for the $ \Omega^{*(2,2)}_{} $ integrals formula (viscosity) between $ 0.3 \leq T^* < 2.5 $. More...
 
double A22_visc_R2 ()
 Coefficient $ A_{} = 1.151508 $ for the $ \Omega^{*(2,2)}_{} $ integrals formula (viscosity) between $ 2.5 \leq T^* < 400 $. More...
 
double B22_visc_R2 ()
 Coefficient $ B_{} = 0.145812; $ for the $ \Omega^{*(2,2)}_{} $ integrals formula (viscosity) between $ 2.5 \leq T^* < 400 $. More...
 
double C22_visc_R2 ()
 Coefficient $ C_{} = 0.437374 $ for the $ \Omega^{*(2,2)}_{} $ integrals formula (viscosity) between $ 2.5 \leq T^* < 400 $. More...
 
double D22_visc_R2 ()
 Coefficient $ D_{} = 0.670219 $ for the $ \Omega^{*(2,2)}_{} $ integrals formula (viscosity) between $ 2.5 \leq T^* < 400 $. More...
 

Function Documentation

double Constants::A11_visc_R1 ( )
inline

Coefficient $ A_{} = 1.340794 $ for the $ \Omega^{*(1,1)}_{} $ integrals formula (viscosity) between $ 0.3 \leq T^* < 2.5 $.

  • Kerkhof, Piet JAM, and Marcel AM Geboers. "Toward a unified theory of isotropic molecular transport phenomena." AIChE journal 51.1 (2005): 79-121.
  • Hirschfelder, Joseph O., et al. Molecular theory of gases and liquids. New York: Wiley, 1964.
double Constants::A11_visc_R2 ( )
inline

Coefficient $ A_{} = 1.066993 $ for the $ \Omega^{*(1,1)}_{} $ integrals formula (viscosity) between $ 2.5 \leq T^* < 400 $.

  • Kerkhof, Piet JAM, and Marcel AM Geboers. "Toward a unified theory of isotropic molecular transport phenomena." AIChE journal 51.1 (2005): 79-121.
  • Hirschfelder, Joseph O., et al. Molecular theory of gases and liquids. New York: Wiley, 1964.
double Constants::A22_visc_R1 ( )
inline

Coefficient $ A_{} = 26.425725 $ for the $ \Omega^{*(2,2)}_{} $ integrals formula (viscosity) between $ 0.3 \leq T^* < 2.5 $.

  • Kerkhof, Piet JAM, and Marcel AM Geboers. "Toward a unified theory of isotropic molecular transport phenomena." AIChE journal 51.1 (2005): 79-121.
  • Hirschfelder, Joseph O., et al. Molecular theory of gases and liquids. New York: Wiley, 1964.
double Constants::A22_visc_R2 ( )
inline

Coefficient $ A_{} = 1.151508 $ for the $ \Omega^{*(2,2)}_{} $ integrals formula (viscosity) between $ 2.5 \leq T^* < 400 $.

  • Kerkhof, Piet JAM, and Marcel AM Geboers. "Toward a unified theory of isotropic molecular transport phenomena." AIChE journal 51.1 (2005): 79-121.
  • Hirschfelder, Joseph O., et al. Molecular theory of gases and liquids. New York: Wiley, 1964.
double Constants::A_diff ( )
inline

Coefficient $ A = 1.06036 $ of the Neufeld-Jansen-Aziz collision integrals formula (diffusivity).

  • Neufeld, Philip D., A. R. Janzen, and R. A. Aziz. "Empirical Equations to Calculate 16 of the Transport Collision Integrals Ω (l, s)* for the Lennard‐Jones (12–6) Potential." The Journal of Chemical Physics 57.3 (1972): 1100-1102.
double Constants::A_vk ( )
inline

Coefficient $ A = 1.16145 $ of the Neufeld-Jansen-Aziz collision integrals formula (viscosity and thermal conductivity).

  • Neufeld, Philip D., A. R. Janzen, and R. A. Aziz. "Empirical Equations to Calculate 16 of the Transport Collision Integrals Ω (l, s)* for the Lennard‐Jones (12–6) Potential." The Journal of Chemical Physics 57.3 (1972): 1100-1102.
double Constants::B11_visc_R1 ( )
inline

Coefficient $ B_{} = 0.326244; $ for the $ \Omega^{*(1,1)}_{} $ integrals formula (viscosity) between $ 0.3 \leq T^* < 2.5 $.

  • Kerkhof, Piet JAM, and Marcel AM Geboers. "Toward a unified theory of isotropic molecular transport phenomena." AIChE journal 51.1 (2005): 79-121.
  • Hirschfelder, Joseph O., et al. Molecular theory of gases and liquids. New York: Wiley, 1964.
double Constants::B11_visc_R2 ( )
inline

Coefficient $ B_{} = 0.157384; $ for the $ \Omega^{*(1,1)}_{} $ integrals formula (viscosity) between $ 2.5 \leq T^* < 400 $.

  • Kerkhof, Piet JAM, and Marcel AM Geboers. "Toward a unified theory of isotropic molecular transport phenomena." AIChE journal 51.1 (2005): 79-121.
  • Hirschfelder, Joseph O., et al. Molecular theory of gases and liquids. New York: Wiley, 1964.
double Constants::B22_visc_R1 ( )
inline

Coefficient $ B_{} = 0.045563; $ for the $ \Omega^{*(2,2)}_{} $ integrals formula (viscosity) between $ 0.3 \leq T^* < 2.5 $.

  • Kerkhof, Piet JAM, and Marcel AM Geboers. "Toward a unified theory of isotropic molecular transport phenomena." AIChE journal 51.1 (2005): 79-121.
  • Hirschfelder, Joseph O., et al. Molecular theory of gases and liquids. New York: Wiley, 1964.
double Constants::B22_visc_R2 ( )
inline

Coefficient $ B_{} = 0.145812; $ for the $ \Omega^{*(2,2)}_{} $ integrals formula (viscosity) between $ 2.5 \leq T^* < 400 $.

  • Kerkhof, Piet JAM, and Marcel AM Geboers. "Toward a unified theory of isotropic molecular transport phenomena." AIChE journal 51.1 (2005): 79-121.
  • Hirschfelder, Joseph O., et al. Molecular theory of gases and liquids. New York: Wiley, 1964.
double Constants::b_0 ( )
inline

Coefficient $ b_0 = -2.1794 $ of the Springer-Zawodzinski-Gottesfeld water vapor saturation pressure formula.

double Constants::b_1 ( )
inline

Coefficient $ b_1 = 2.9530 \cdot 10^{-2} $ of the Springer-Zawodzinski-Gottesfeld water vapor saturation pressure formula.

double Constants::b_2 ( )
inline

Coefficient $ b_2 = -9.1837 \cdot 10^{-5} $ of the Springer-Zawodzinski-Gottesfeld water vapor saturation pressure formula.

double Constants::b_3 ( )
inline

Coefficient $ b_3 = 1.4454 \cdot 10^{-7} $ of the Springer-Zawodzinski-Gottesfeld water vapor saturation pressure formula.

double Constants::B_diff ( )
inline

Coefficient $ B = 0.15610 $ of the Neufeld-Jansen-Aziz collision integrals formula (diffusivity).

  • Neufeld, Philip D., A. R. Janzen, and R. A. Aziz. "Empirical Equations to Calculate 16 of the Transport Collision Integrals Ω (l, s)* for the Lennard‐Jones (12–6) Potential." The Journal of Chemical Physics 57.3 (1972): 1100-1102.
double Constants::B_vk ( )
inline

Coefficient $ B = 0.14874 $ of the Neufeld-Jansen-Aziz collision integrals formula (viscosity and thermal conductivity).

  • Neufeld, Philip D., A. R. Janzen, and R. A. Aziz. "Empirical Equations to Calculate 16 of the Transport Collision Integrals Ω (l, s)* for the Lennard‐Jones (12–6) Potential." The Journal of Chemical Physics 57.3 (1972): 1100-1102.
double Constants::C11_visc_R1 ( )
inline

Coefficient $ C_{} = 1.546648 $ for the $ \Omega^{*(1,1)}_{} $ integrals formula (viscosity) between $ 0.3 \leq T^* < 2.5 $.

  • Kerkhof, Piet JAM, and Marcel AM Geboers. "Toward a unified theory of isotropic molecular transport phenomena." AIChE journal 51.1 (2005): 79-121.
  • Hirschfelder, Joseph O., et al. Molecular theory of gases and liquids. New York: Wiley, 1964.
double Constants::C11_visc_R2 ( )
inline

Coefficient $ C_{} = 0.424013 $ for the $ \Omega^{*(1,1)}_{} $ integrals formula (viscosity) between $ 2.5 \leq T^* < 400 $.

  • Kerkhof, Piet JAM, and Marcel AM Geboers. "Toward a unified theory of isotropic molecular transport phenomena." AIChE journal 51.1 (2005): 79-121.
  • Hirschfelder, Joseph O., et al. Molecular theory of gases and liquids. New York: Wiley, 1964.
double Constants::C22_visc_R1 ( )
inline

Coefficient $ C_{} = -25.232304 $ for the $ \Omega^{*(2,2)}_{} $ integrals formula (viscosity) between $ 0.3 \leq T^* < 2.5 $.

  • Kerkhof, Piet JAM, and Marcel AM Geboers. "Toward a unified theory of isotropic molecular transport phenomena." AIChE journal 51.1 (2005): 79-121.
  • Hirschfelder, Joseph O., et al. Molecular theory of gases and liquids. New York: Wiley, 1964.
double Constants::C22_visc_R2 ( )
inline

Coefficient $ C_{} = 0.437374 $ for the $ \Omega^{*(2,2)}_{} $ integrals formula (viscosity) between $ 2.5 \leq T^* < 400 $.

  • Kerkhof, Piet JAM, and Marcel AM Geboers. "Toward a unified theory of isotropic molecular transport phenomena." AIChE journal 51.1 (2005): 79-121.
  • Hirschfelder, Joseph O., et al. Molecular theory of gases and liquids. New York: Wiley, 1964.
double Constants::C_diff ( )
inline

Coefficient $ C = 0.19300 $ of the Neufeld-Jansen-Aziz collision integrals formula (diffusivity).

  • Neufeld, Philip D., A. R. Janzen, and R. A. Aziz. "Empirical Equations to Calculate 16 of the Transport Collision Integrals Ω (l, s)* for the Lennard‐Jones (12–6) Potential." The Journal of Chemical Physics 57.3 (1972): 1100-1102.
double Constants::C_vk ( )
inline

Coefficient $ C = 0.52487 $ of the Neufeld-Jansen-Aziz collision integrals formula (viscosity and thermal conductivity).

  • Neufeld, Philip D., A. R. Janzen, and R. A. Aziz. "Empirical Equations to Calculate 16 of the Transport Collision Integrals Ω (l, s)* for the Lennard‐Jones (12–6) Potential." The Journal of Chemical Physics 57.3 (1972): 1100-1102.
double Constants::D11_visc_R1 ( )
inline

Coefficient $ D_{} = 2.768179 $ for the $ \Omega^{*(1,1)}_{} $ integrals formula (viscosity) between $ 0.3 \leq T^* < 2.5 $.

  • Kerkhof, Piet JAM, and Marcel AM Geboers. "Toward a unified theory of isotropic molecular transport phenomena." AIChE journal 51.1 (2005): 79-121.
  • Hirschfelder, Joseph O., et al. Molecular theory of gases and liquids. New York: Wiley, 1964.
double Constants::D11_visc_R2 ( )
inline

Coefficient $ D_{} = 0.698873 $ for the $ \Omega^{*(1,1)}_{} $ integrals formula (viscosity) between $ 2.5 \leq T^* < 400 $.

  • Kerkhof, Piet JAM, and Marcel AM Geboers. "Toward a unified theory of isotropic molecular transport phenomena." AIChE journal 51.1 (2005): 79-121.
  • Hirschfelder, Joseph O., et al. Molecular theory of gases and liquids. New York: Wiley, 1964.
double Constants::D22_visc_R1 ( )
inline

Coefficient $ D_{} = 0.016075 $ for the $ \Omega^{*(2,2)}_{} $ integrals formula (viscosity) between $ 0.3 \leq T^* < 2.5 $.

  • Kerkhof, Piet JAM, and Marcel AM Geboers. "Toward a unified theory of isotropic molecular transport phenomena." AIChE journal 51.1 (2005): 79-121.
  • Hirschfelder, Joseph O., et al. Molecular theory of gases and liquids. New York: Wiley, 1964.
double Constants::D22_visc_R2 ( )
inline

Coefficient $ D_{} = 0.670219 $ for the $ \Omega^{*(2,2)}_{} $ integrals formula (viscosity) between $ 2.5 \leq T^* < 400 $.

  • Kerkhof, Piet JAM, and Marcel AM Geboers. "Toward a unified theory of isotropic molecular transport phenomena." AIChE journal 51.1 (2005): 79-121.
  • Hirschfelder, Joseph O., et al. Molecular theory of gases and liquids. New York: Wiley, 1964.
double Constants::D_diff ( )
inline

Coefficient $ D = 0.47635 $ of the Neufeld-Jansen-Aziz collision integrals formula (diffusivity).

  • Neufeld, Philip D., A. R. Janzen, and R. A. Aziz. "Empirical Equations to Calculate 16 of the Transport Collision Integrals Ω (l, s)* for the Lennard‐Jones (12–6) Potential." The Journal of Chemical Physics 57.3 (1972): 1100-1102.
double Constants::D_vk ( )
inline

Coefficient $ D = 0.77320 $ of the Neufeld-Jansen-Aziz collision integrals formula (viscosity and thermal conductivity).

  • Neufeld, Philip D., A. R. Janzen, and R. A. Aziz. "Empirical Equations to Calculate 16 of the Transport Collision Integrals Ω (l, s)* for the Lennard‐Jones (12–6) Potential." The Journal of Chemical Physics 57.3 (1972): 1100-1102.
double Constants::E0 ( )
inline

Permittivity of free space, $ \epsilon_0^{} = 8.854187818 \cdot 10^{-12} \quad \left[ \frac{\text{F}}{\text{m}} \right] $.

Referenced by FuelCellShop::MicroScale::AgglomerateBase::AgglomerateBase().

Here is the caller graph for this function:

double Constants::E_diff ( )
inline

Coefficient $ E = 1.03587 $ of the Neufeld-Jansen-Aziz collision integrals formula (diffusivity).

  • Neufeld, Philip D., A. R. Janzen, and R. A. Aziz. "Empirical Equations to Calculate 16 of the Transport Collision Integrals Ω (l, s)* for the Lennard‐Jones (12–6) Potential." The Journal of Chemical Physics 57.3 (1972): 1100-1102.
double Constants::E_vk ( )
inline

Coefficient $ E = 2.16178 $ of the Neufeld-Jansen-Aziz collision integrals formula (viscosity and thermal conductivity).

  • Neufeld, Philip D., A. R. Janzen, and R. A. Aziz. "Empirical Equations to Calculate 16 of the Transport Collision Integrals Ω (l, s)* for the Lennard‐Jones (12–6) Potential." The Journal of Chemical Physics 57.3 (1972): 1100-1102.
double Constants::F ( )
inline
double Constants::F_diff ( )
inline

Coefficient $ F = 1.52996 $ of the Neufeld-Jansen-Aziz collision integrals formula (diffusivity).

  • Neufeld, Philip D., A. R. Janzen, and R. A. Aziz. "Empirical Equations to Calculate 16 of the Transport Collision Integrals Ω (l, s)* for the Lennard‐Jones (12–6) Potential." The Journal of Chemical Physics 57.3 (1972): 1100-1102.
double Constants::F_vk ( )
inline

Coefficient $ F = 2.43787 $ of the Neufeld-Jansen-Aziz collision integrals formula (viscosity and thermal conductivity).

  • Neufeld, Philip D., A. R. Janzen, and R. A. Aziz. "Empirical Equations to Calculate 16 of the Transport Collision Integrals Ω (l, s)* for the Lennard‐Jones (12–6) Potential." The Journal of Chemical Physics 57.3 (1972): 1100-1102.
double Constants::G_diff ( )
inline

Coefficient $ G = 1.76474 $ of the Neufeld-Jansen-Aziz collision integrals formula (diffusivity).

  • Neufeld, Philip D., A. R. Janzen, and R. A. Aziz. "Empirical Equations to Calculate 16 of the Transport Collision Integrals Ω (l, s)* for the Lennard‐Jones (12–6) Potential." The Journal of Chemical Physics 57.3 (1972): 1100-1102.
const dealii::Tensor<1,dim> Constants::gravity_acceleration ( )
inline

Gravitational acceleration, $ \mathbf{g} = \{ g_{\alpha} \}_{\alpha = 1}^d \quad \text{such that} \quad \forall \alpha \neq d : \quad g_{\alpha} = 0 \quad \left[ \frac{\text{m}}{\text{sec}^2} \right] \quad \text{and} \quad g_d = -9.81 \quad \left[ \frac{\text{m}}{\text{sec}^2} \right] $.

References dim.

double Constants::H_diff ( )
inline

Coefficient $ H = 3.89411 $ of the Neufeld-Jansen-Aziz collision integrals formula (diffusivity).

  • Neufeld, Philip D., A. R. Janzen, and R. A. Aziz. "Empirical Equations to Calculate 16 of the Transport Collision Integrals Ω (l, s)* for the Lennard‐Jones (12–6) Potential." The Journal of Chemical Physics 57.3 (1972): 1100-1102.
double Constants::K ( )
inline

Boltzmann constant, $ k_{} = 8.617332478 \cdot 10^{-5} \quad \left[ \frac{\text{eV}}{\text{K}} \right] $.

Referenced by FuelCellShop::Kinetics::BaseKinetics::BaseKinetics().

Here is the caller graph for this function:

double Constants::K_SI ( )
inline

Boltzmann constant in SI units, $ k_{} = 1.3806488 \cdot 10^{-23} \quad \left[ \frac{\text{J}}{\text{K}} \right] $.

double Constants::N_A ( )
inline

Avogadro's constant, $ N_A = 6.022140857 \cdot 10^{23} \quad \left[ \frac{\text{molecules}}{\text{mol}} \right] $.

double Constants::Pi ( )
inline

$ \pi_{} = 3.141592654 $.

Referenced by FuelCellShop::MicroScale::SphericalAgglomerateGeometry::SphericalAgglomerateGeometry().

Here is the caller graph for this function:

double Constants::R ( )
inline
const dealii::SymmetricTensor<2,dim> Constants::unit_tensor ( )
inline

Unit tensor, $ \hat{ \mathbf{I} } = \{ \delta_{\alpha \beta} \}_{\alpha,\beta = 1}^d $.

References dim.